Crossing Reduction in Circular Layouts
نویسندگان
چکیده
We propose a two-phase heuristic for crossing reduction in circular layouts. While the first algorithm uses a greedy policy to build a good initial layout, an adaptation of the sifting heuristic for crossing reduction in layered layouts is used for local optimization in the second phase. Both phases are conceptually simpler than previous heuristics, and our extensive experimental results indicate that they also yield fewer crossings. An interesting feature is their straightforward generalization to the weighted case.
منابع مشابه
The Bundled Crossing Number
We study the algorithmic aspect of edge bundling. A bundled crossing in a drawing of a graph is a group of crossings between two sets of parallel edges. The bundled crossing number is the minimum number of bundled crossings that group all crossings in a drawing of the graph. We show that the bundled crossing number is closely related to the orientable genus of the graph. If multiple crossings a...
متن کاملMinimizing Crossings in Constrained Two-Sided Circular Graph Layouts
Circular layouts are a popular graph drawing style, where vertices are placed on a circle and edges are drawn as straight chords. Crossing minimization in circular layouts is NP-hard. One way to allow for fewer crossings in practice are two-sided layouts that draw some edges as curves in the exterior of the circle. In fact, oneand two-sided circular layouts are equivalent to one-page and two-pa...
متن کاملImproved Circular Layouts
Circular graph layout is a drawing scheme where all nodes are placed on the perimeter of a circle. An inherent issue with circular layouts is that the rigid restriction on node placement often gives rise to long edges and an overall dense drawing. We suggest here three independent, complementary techniques for lowering the density and improving the readability of circular layouts. First, a new ...
متن کاملA framework and algorithms for circular drawings of graphs
In this paper, we present a framework and two linear time algorithms for obtaining circular drawings of graphs. The first technique produces circular drawings of biconnected graphs and finds a zero crossing circular drawing if one exists. The second technique finds multiple embedding circle drawings. Techniques for the reduction of edge crossings are also discussed. Results of experimental stud...
متن کاملOn Linear Layouts of Graphs
In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A k-stack (respectively, k-queue, k-arch) layout of a graph consists of a total order of the vertices, and a partition of the edges into k sets of pairwise non-crossing (respectively, non-nested, non-disjoint) edges. Motivated by numerous applications, stack layouts (also call...
متن کامل